Assessment of simulated water balance from Noah, Noah-MP, CLM, and VIC over CONUS using the NLDAS test bed

Xitian Cai¹, Zong-Liang Yang¹, Youlong Xia², Maoyi Huang³, Helin Wei², Ruby Leung³, Michael EK²

1 University of Texas at Austin
2 NOAA/NCEP/EMC
3 Pacific Northwest National Laboratory
Acknowledgement: NASA IDS; JSG OCR, UT Austin

Contents

- Introduction
- Objective
- Results
 - Terrestrial water storage
 - Streamflow
 - Evapotranspiration
 - Soil moisture
- Conclusions

Journal of Geophysical Research: Atmospheres

RESEARCH ARTICLE

10.1002/2014JD022113

Key Points:

- Noah-MP provides the best simulations of soil moisture and TWS
- CLM4 shows the best performance in simulating ET
- VIC ranks the highest in performing the streamflow simulations

Correspondence to:

Z.-L. Yang, liang@jsg.utexas.edu

Assessment of simulated water balance from Noah, Noah-MP, CLM, and VIC over CONUS using the NLDAS test bed

Xitian Cai¹, Zong-Liang Yang¹, Youlong Xia^{2,3}, Maoyi Huang⁴, Helin Wei^{2,3}, L. Ruby Leung⁴, and Michael B. Ek²

¹Department of Geological Sciences, The John A. and Katherine G. Jackson School of Geosciences, University of Texas at Austin, Austin, Texas, USA, ²Environmental Modeling Center, National Centers for Environment and Prediction, NOAA, College Park, Maryland, USA, ³IMSG at NOAA/NCEP/EMC, College Park, Maryland, USA, ⁴Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington, USA

Abstract This study assesses the hydrologic performance of four land surface models (LSMs) for

Citation:

Cai, X., Z.-L. Yang, Y. Xia, M. Huang, H. Wei, L. R. Leung, and M. B. Ek (2014), Assessment of simulated water balance from Noah, Noah-MP, CLM, and VIC over CONUS using the NLDAS test bed, *J. Geophys. Res. Atmos.*, 119, 13,751–13,770, doi:10.1002/2014JD022113.

Introduction

- Importance of land surface models
 - Lower boundary condition in weather/climate models
 - Land-atmosphere interactions and feedbacks
 - Provides fluxes (e.g. ET, sensible heat, runoff) and state variables (soil moisture/temperature, snow)
 - Implement the human influences on the climate system (land cover change, irrigation, dams, fossil fuel burning, etc.)

NLDAS Models and Development

- ❖ NLDAS-2 LSM intercomparison (Xia et al., 2012).
 - Noah, Mosaic, SAC, & VIC
- Noah-MP as the next-generation LSM in NCEP; CLM as one of the most sophisticated LSMs in earth system modeling.
- Compared to Noah LSM, CLM4 and Noah-MP have the following advancement.
 - Multi-layer snow model
 - Groundwater model
 - Dynamic leaf model

Objective

Evaluate these improvements on the same test bed that current NLDAS-2 LSMs were evaluated.

NLDAS Testbed

Model Structures

Model	Vegetation	Soil	Snow	
Noah	Dominant vegetation type in one grid cell	4 layer moisture and	Single	
	with prescribed LAI	temperature	layer	
VIC	Tiling in one grid call with procarihad I AI	3 layer moisture and	Two layers	
	Tiling in one grid cell with prescribed LAI	temperature		
Noah-MP	Dominant vegetation type in one grid cell	4 layer moisture and	Up to 3	
	with dynamic LAI	temperature	layers	
CLM4	Up to 10 vegetation	10 layer moisture and 15 layer	Up to 5	
	types in one grid cell with prescribed LAI	temperature	layers	

What is Noah-MP?

Augmented Noah LSM with Multi-Parameterization options (Noah-MP):

- Key references: (Niu et al., JGR, 2011; Yang et al., JGR, 2011)
- Recoded based on the standard Noah LSM
- Well documented and highly modular
- Improved biophysical realism (land memory processes); separate vegetation canopy and ground temperatures; a multi-layer snowpack; an unconfined aquifer model for groundwater dynamics; an interactive vegetation canopy layer

Noah-MP

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 116, D12109, doi:10.1029/2010JD015139, 2011

The community Noah land surface model with multiparameterization options (Noah-MP):

1. Model description and evaluation with local-scale measurements

Guo-Yue Niu,^{1,2} Zong-Liang Yang,¹ Kenneth E. Mitchell,³ Fei Chen,⁴ Michael B. Ek,³ Michael Barlage,⁴ Anil Kumar,⁵ Kevin Manning,⁴ Dev Niyogi,⁶ Enrique Rosero,^{1,7} Mukul Tewari,⁴ and Youlong Xia³

Received 4 October 2010; revised 3 February 2011; accepted 27 March 2011; published 24 June 2011.

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 116, D12110, doi:10.1029/2010JD015140, 2011

The community Noah land surface model with multiparameterization options (Noah-MP):

2. Evaluation over global river basins

Zong-Liang Yang,¹ Guo-Yue Niu,^{1,2} Kenneth E. Mitchell,³ Fei Chen,⁴ Michael B. Ek,³ Michael Barlage,⁴ Laurent Longuevergne,⁵ Kevin Manning,⁴ Dev Niyogi,⁶ Mukul Tewari,⁴ and Youlong Xia³

Received 4 October 2010; revised 4 February 2011; accepted 25 March 2011; published 24 June 2011.

Noah-MP: Noah with Multi-Physics Options

```
1. Leaf area index (prescribed; predicted) 2
2. Turbulent transfer (Noah; NCAR LSM) 2
3. Soil moisture stress factor for transp. (Noah; BATS; CLM) 3
4. Canopy stomatal resistance (Jarvis; Ball-Berry) 2
5. Snow surface albedo (BATS; CLASS) 2
6. Frozen soil permeability (Noah; Niu and Yang, 2006) 2
7. Supercooled liquid water (Noah; Niu and Yang, 2006) 2
8. Radiation transfer: 3
  Modified two-stream: Gap = F (3D structure; solar zenith
  angle; ...) ≤ 1-GVF
  Two-stream applied to the entire grid cell: Gap = 0
  Two-stream applied to fractional vegetated area: Gap = 1-GVF
9. Partitioning of precipitation to snow and rainfall (CLM; Noah) 2
10. Runoff and groundwater: 4
  TOPMODEL with groundwater
  TOPMODEL with an equilibrium water table
  (Chen&Kumar, 2001)
                                              2x2x3x2x2x2x2x3x2x4 =
  Original Noah scheme
                                                  4608 combinations
  BATS surface runoff and free drainage
```

With these options, we can conduct ensemble modeling using one model.

Model Setup and Data

Model Setup

Temporal: hourly from 10/1979 to 9/2007

Spatial: 1/8th degree for the CONUS

Forcing: NLDAS-2

Observational data

- USGS streamflow for 961 small basins
- MODIS and gridded FLUXNET ET
- GRACE TWS anomalies
- SCAN soil moisture

Terrestrial Water Storage—Temporal Pattern

CONUS Terrestrial Water Storage Anormaly (GRACE vs. LSMs)

Noah LSM underestimates GRACE TWS amplitude, while all other models capture the TWS fluctuation.

Terrestrial Water Storage—Spatial Pattern

TWS difference between the wettest and driest months over 2003-2008 period.

Terrestrial Water Storage—Statistics

Statistical summary of model performance in simulating terrestrial water storage anomaly

	\mathbb{R}^2							RMSE						
Model	NW	NE	SW	SE	Avg.	CONUS	NW	NE	SW	SE	Avg.	CONUS		
Noah	0.914	0.739	0.534	0.917	0.776	0.894	30.89	30.41	25.89	34.51	30.42	22.55		
Noah-MP	0.962	0.696	0.790	0.932	0.845	0.907	24.47	38.05	19.65	21.97	26.03	15.17		
CLM4	0.956	0.683	0.671	0.912	0.805	0.913	26.29	38.81	23.33	57.10	36.38	14.50		
VIC	0.933	0.694	0.670	0.906	0.801	0.906	26.10	31.31	22.35	25.16	26.23	15.50		
Mean	0.941	0.703	0.666	0.917	0.807	0.905	26.94	34.64	22.81	34.68	29.77	16.93		

All R² values pass 99% confidence level.

Noah-MP shows the highest skills.

Terrestrial Water Storage—Contributions

$$TWSA_i = SMCA_i + SWEA_i + WTDA_i$$

Among soil moisture, snow, and groundwater, which makes the largest contribution to the TWS anomalies?

Terrestrial Water Storage—Contributions

	NW			NE				SW			SE			CONUS		
	SMC	SWE	GW													
${f R}^2$																
Noah-MP	44.0	29.6	26.4	48.4	21.2	30.4	33.4	43.8	22.8	50.7	4.2	45.2	42.1	24.4	33.5	
CLM4	41.3	20.0	38.7	42.3	16.3	41.4	36.2	37.1	26.7	50.8	0.2	49.0	39.8	18.7	41.5	
RMSE																
Noah-MP CLM4	25.2 36.3	34.2 36.6	40.7 27.0	28.7 34.8	36.5 35.5	34.8 29.8	29.0 33.3	35.4 35.9	35.6 30.8	19.9 33.0	47.2 40.7	33.0 26.4	23.1 39.7	38.0 42.0	38.9 18.3	

Each contributes about one third to the TWS anomaly Depends on model and region

Streamflow Relative Bias (LSMs - Obs)

Noah LSM overestimates streamflow; while Noah-MP and CLM4 are comparable with VIC and observation.

Streamflow Correlations

Noah-MP shows high correlations over the northwest snow region.

Snow Water Equivalent and Runoff

There is about one month timing difference between Noah LSM, Noah-MP.

Both CLM and Noah-MP include multi-layer snow structure and groundwater dynamics.

Does this show any value in simulating the streamflow?

Monthly Climatological Streamflow

Comparison of ET, Fluxnet&MODIS vs. LSMs

Noah-MP and VIC simulated ET increases fast in growing season over eastern regions; while Noah too slow.

CLM4 shows the best agreement with observation.

Annual ET (LSMs – Fluxnet)

- All models underestimate ET over the west coast region.
- Noah underestimates ET; while Noah-MP and VIC overestimate.

Annual ET (LSMs – MODIS)

Negative bias over the southeast region, which may be due to bias in MODIS.

Comparison of Noah-MP and Satellite LAI

Noah-MP

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 116, D12109, doi:10.1029/2010JD015139, 2011

The community Noah land surface model with multiparameterization options (Noah-MP):

1. Model description and evaluation with local-scale measurements

Guo-Yue Niu,^{1,2} Zong-Liang Yang,¹ Kenneth E. Mitchell,³ Fei Chen,⁴ Michael B. Ek,³ Michael Barlage,⁴ Anil Kumar,⁵ Kevin Manning,⁴ Dev Niyogi,⁶ Enrique Rosero,^{1,7} Mukul Tewari,⁴ and Youlong Xia³

Received 4 October 2010; revised 3 February 2011; accepted 27 March 2011; published 24 June 2011.

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 116, D12110, doi:10.1029/2010JD015140, 2011

The community Noah land surface model with multiparameterization options (Noah-MP):

2. Evaluation over global river basins

Zong-Liang Yang,¹ Guo-Yue Niu,^{1,2} Kenneth E. Mitchell,³ Fei Chen,⁴ Michael B. Ek,³ Michael Barlage,⁴ Laurent Longuevergne,⁵ Kevin Manning,⁴ Dev Niyogi,⁶ Mukul Tewari,⁴ and Youlong Xia³

2

Noah-MP

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 116, D12109, doi:10.1029/2010JD015139, 2011

The community Noah land surface model with multiparameterization options (Noah-MP):

1. Model description and evaluation with local-scale measurements

Guo-Yue Niu,^{1,2} Zong-Liang Yang,¹ Kenneth E. Mitchell,³ Fei Chen,⁴ Michael B. Ek,³ Michael Barlage,⁴ Anil Kumar,⁵ Kevin Manning,⁴ Dev Niyogi,⁶ Enrique Rosero,^{1,7} Mukul Tewari,⁴ and Youlong Xia³

Received 4 October 2010; revised 3 February 2011; accepted 27 March 2011; published 24 June 2011.

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 116, D12110, doi:10.1029/2010JD015140, 2011

The community Noah land surface model with multiparameterization options (Noah-MP):

2. Evaluation over global river basins

Zong-Liang Yang,¹ Guo-Yue Niu,^{1,2} Kenneth E. Mitchell,³ Fei Chen,⁴ Michael B. Ek,³ Michael Barlage,⁴ Laurent Longuevergne,⁵ Kevin Manning,⁴ Dev Niyogi,⁶ Mukul Tewari,⁴ and Youlong Xia³

2

Soil Moisture

SCAN site locations and data availability

SCAN: Soil Climate Analysis Network.

Comparison of Soil Moisture (Top 1 m)

- All LSMs perform well in the Eastern US, but not well in the Western US.
- Noah-MP is among the best in all the 6 regions.

The amplitude of CLM4 simulated soil moisture is relatively small.

Conclusions

- Noah-MP, CLM4, and VIC capture the overall water cycle, based on their performance in the terrestrial water storage modeling.
- Noah-MP and CLM4 perform as well as VIC in runoff simulation.
- CLM4 shows the best agreement with ET observations.
- Noah-MP shows the best performance in soil moisture modeling.

Questions

Contact: liang@jsg.utexas.edu
xtcai@utexas.edu
Thank you!